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Abstract—A new class of cyclobisamides, having the general profile of amino acid (cystine or serine)–ether composites, as
potentially efficient ion transporters has been designed and synthesized. In model membranes, the adamantane harboring
composites exhibited 57–66% of gramicidin A activity in ion transport. © 2002 Elsevier Science Ltd. All rights reserved.

The design and synthesis of new macrocycles with
tailor-made structural and functional properties contin-
ues to attract the attention of synthetic chemists.1 Our
promising efforts in the novel domain of hybrid cyclic
peptides2,3 made it logical to explore systems that are
likely to be more effective in ion transport. In this
context, cyclic structures that incorporate facets of pep-
tide and ether were considered attractive. This commu-
nication reports the design and synthesis of
cystine-based 15-membered and serine-based 20-mem-

bered cyclo-4-oxa-heptane-1,7-bisamides and demon-
strates their ability to transport Na+ ions across model
membranes.

The cystine-based 15-membered cyclo-4-oxa-heptane-
1,7-bisamides (4a–c) were prepared by the condensation
of 14 with either the simple cystine diOMe (2a) or its
C,C�-extended bispeptides5 (2b–c) in the presence of
NEt3 under high dilution conditions (Scheme 1). The
precursor C,C�-extended bispeptides (2b–c) were pre-

Scheme 1.
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pared by DCC/HOSu coupling of bis Boc cystine with
either LeuOMe or 1-amino adamantane, followed by
N�-Boc deprotection using TFA/CH2Cl2.

Similarly, the serine-based 20-membered cyclo-4-oxa-
heptane-1,7-bisamides (5a–c) were prepared by the con-
densation of 1 with 1,3-adamantane bis-ser
depsipeptides (3a–c) (Scheme 1). The preparation of
1,3-adamantane bis-ser depsipeptides (3a–c) firstly
involves the condensation of an N,C-protected serine
amino acid or its peptide with 1,3-adamantane-dicar-
bonyl dichloride followed by N�-Z deprotection using
10% Pd/C/H2.

All cyclobisamides (4a–c and 5a–c) required purifica-
tion through a short column of silica gel with CHCl3/
MeOH as eluent and were fully characterized.6 In 1H
NMR variable-temperature (VT) studies, conducted in
DMSO-d6 between 303 and 343 K, there was no indica-
tion of any intramolecular hydrogen bonding of the
amide protons as shown by high temperature coefficient
values (d�/dT >5 ppb K−1).

The ability of cyclobisamides 4a–c and 5a–c to trans-
port ions across model membranes (small unilamellar
vesicles of palmitoyl oleoyl phosphatidylcholine) was
assessed by monitoring the decay of a valinomycin-
mediated K+ diffusion potential using the fluorescent
dye method.7 Of these, 4c and 5c were able to dissipate
the diffusion potential created by valinomycin (Vm),
indicating its ability to transport Na+ ions across the
lipid bilayer (Fig. 1). Compounds 4c and 5c were,
respectively, assessed as having 57 and 66% of grami-
cidin A activity, in ion transport. Other compounds in
the class exhibited a low profile. None of the cyclo-
bisamides were able to transport Ca2+ and Mg2+ ions.
The compounds 4c and 5c did not cause the release of
entrapped carboxyflorescein, indicating that the move-
ment of ions across the lipid bilayers was not due to the
formation of large pores or detergent-like action.8 The
ion flux may thus be ascribed to a carrier-type of
ion-transport mechanism like that of valinomycin.9

The design delineated provides a straightforward entry
into a new class of amino acid anchored cyclobisamide
ionophores. The flexibility in the synthetic strategy with
the proper choice of ring-inserts is likely to provide
incentives for the design of cyclobisamide ionophores
with promise to act as selective hosts in molecular
recognition.
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NHs); ES MS m/z 621 ([M+H]+, 100%). Anal. calcd for
C26H44N4O9S2: C, 50.30; H, 7.14; N, 9.03; S, 10.33.
Found: C, 50.15; H, 7.24; N, 8.59; S, 10.09. Compound 4c:
mp 173–175°C; IR (KBr) �max 3304, 3073, 2908, 2851,
1848, 1539 cm−1; 1H NMR (200 MHz, CDCl3) � 1.66–2.04
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Cyst C�H2s), 3.27 (m, 2H, Cyst C�H2s), 3.55 (m, 2H,
-OCH2), 3.90 (m, 2H, -OCH2), 3.60 (m, 2H, Cyst C�Hs),
6.05 (s, 2H, Adm NHs), 6.96 (d, J=8.4 Hz, 2H, Cyst
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